Authentication protocols in pervasive computing
نویسنده
چکیده
The popularity of personal computing devices (e.g. smart cards) exposes users to risks, notably identity theft, and creates new requirements for secure communication. A recently proposed approach to creating secure communication is to use human trust and human interactions. These approaches potentially eliminate the need for passwords as in Bluetooth, shared secrets or trusted parties, which are often too complex and expensive to use in portable devices. In this new technology, handheld devices exchange data (e.g. payment, heart rates or public keys) over some medium (e.g. WiFi) and then display a short and non-secret digest of the protocol’s run that the devices’ human owners manually compare to ensure they agree on the same data, i.e. human interactions are used to prevent fraud. In this thesis, we present several new protocols of this type which are designed to optimise the work required of humans to achieve a given level of security. We discover that the design of these protocols is influenced by several principles, including the ideas of commitment without knowledge and separation of security concerns, where random and cryptographic attacks should be tackled separately. Underpinning the technology is a new cryptographic function, termed a keyed digest function, which produces a short number for humans to compare. This is similar to the notion of a universal hash function, but its output length is shorter (e.g. 16 bits). Hence, it should be faster to compute. We propose several digest constructions using Toeplitz matrices, integer multiplication and pseudorandom numbers. The application of digest functions leads us to develop more efficient alternatives to standard digital signatures. Our protocol security analysis leads to a new bound on the key length for an almost universal hash function, which can be derived by the pigeon-hole principle. The new bound turns out to be tighter than another similar bound derived from the combination of the Singleton bound in coding theory and an equivalence between error-correcting codes and almost universal hash functions.
منابع مشابه
Embedding Distance-Bounding Protocols within Intuitive Interactions
Although much research was conducted on devising intuitive interaction paradigms with pervasive computing devices, it has not been realized that authentication, an important need in this context, has a strong impact on the ease of use. More specifically, distance-bounding protocols are necessary in some of the most interesting scenarios in pervasive computing. This article describes a drag-and-...
متن کاملAn ECC-Based Mutual Authentication Scheme with One Time Signature (OTS) in Advanced Metering Infrastructure
Advanced metering infrastructure (AMI) is a key part of the smart grid; thus, one of the most important concerns is to offer a secure mutual authentication. This study focuses on communication between a smart meter and a server on the utility side. Hence, a mutual authentication mechanism in AMI is presented based on the elliptic curve cryptography (ECC) and one time signature (OTS) consists o...
متن کاملPrivate Entity Authentication for Pervasive Computing Environments
Entity authentication becomes ubiquitously necessary in pervasive computing environments. We provide taxonomy of entity authentication between keys and locks. Based on the discussion, we propose a novel authentication approach for pervasive computing environments. A person uses a single device, the Master Key, which aggregates all his digital keys for entity authentication. The Master Key initi...
متن کاملExploiting Empirical Engagement in Authentication Protocol Design
We develop the theme of an earlier paper [3], namely that security protocols for pervasive computing frequently need to exploit empirical channels and that the latter can be classified by variants of the Dolev-Yao attacker model. We refine this classification of channels and study three protocols in depth: two from our earlier paper and one new one.
متن کاملAuthenticating Pervasive Devices with Human Protocols
Forgery and counterfeiting are emerging as serious security risks in low-cost pervasive computing devices. These devices lack the computational, storage, power, and communication resources necessary for most cryptographic authentication schemes. Surprisingly, low-cost pervasive devices like Radio Frequency Identification (RFID) tags share similar capabilities with another weak computing device:...
متن کامل@qK Authenticating Pervasive Devices with Human Protocols
Forgery and counterfeiting are emerging as serious security risks in low-cost pervasive computing devices. These devices lack the computational, storage, power, and communication resources necessary for most cryptographic authentication schemes. Surprisingly, low-cost pervasive devices like Radio Frequency Identification (RFID) tags share similar capabilities with another weak computing device:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009